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Abstract

We have defined a research programme that will explore the link between planning and exe-

cution systems. A simple scenario has been defined in which we have a very capable off-line

planning system interacting with the user and a smaller, less capable, on-line real-time system

executing plans and reacting to faults. However, the on-line execution system may have a
more flexible representation of the plans it is executing. This imbalance in the capabilities of

the two "agents" involved should clarify some of the research objectives and give us an

experimental framework for our work. Our task is to investigate the knowledge representa-

tions and communication protocols needed to link a user stating some requirements for a task

to be carried out through a planning system to the (remote) execution agent that can carry out
the user's wishes.

We are starting from the notion that a single representation can encapsulate the expression of

the user's requirements, the capabilities for action, the communication to the execution agent,

the successful or faulty response from the execution agent and the means of keeping the user
informed. This is based on our work on Goal Structure, which captures the intent of plan

steps; Task Formalism, a declarative input language for the planners we have built at Edin-

burgh; and on the definition of a Plan State.

Methods of creating plan patches to update the plans separately held by each of the parties

involved to keep them in step as they each react to changing circumstances in real-time will

be investigated. This will involve the specification of plan patch attachment points that can
be understood by the recipient. We will also investigate transaction based methods for coor-

dinating the activities of the planner with those of the execution agent and user.

The trial application area for the research is in the command and control of an advanced Earth

Observation Space Platform.
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1. Introduction

We have just embarked on a new phase in our research concerned with the application of

Artificial Intelligence (AI) planning techniques to the area of spacecraft command and control.

In particular, the research addresses the issue of closing the loop between plan generation and
execution monitoring in the face of simple plan failures.

1.1. Planning and Executing: Closing the Loop

In this project, we intend to make use of our experiences in dealing with applications of AI

planning techniques to practical projects (with O-Plan, Currie and Tam, 1985) and to develop

a planning system that closes the loop between planning and executing. There have been

some successes with previous attempts at closing the loop (Fikes, Hart and Nilsson (1972),

Wilkins (1985), Malcolm and Smithers (1988), Drabble (1988)), but often the plans generated

were rather limited and not very flexible. In general, the complexities of the individual tasks
of plan representation, generation, execution monitoring and repair has led to research into

each of these issues separately. In particular, there is now a mismatch between the scale and

capabilities of plan representations proposed for real-time execution systems (Georgeff and

Lansky (1986), Nilsson (1988), Rosenschien and Kaelbling (1987)) and those that can be gen-
erated by today's AI planners.

However, the demand is for a system that can take a command request, generate a plan, exe-

cute it and react to simple failures of that plan, either by repairing it or by re-planning. Expli-
cit knowledge about the structure of the plan, the contribution of the actions involved and the

reasons for performing plan modifications at various stages of the plan construction process,

provides us with much of the information required for dealing with plan failures. Such

knowledge is also essential for further planning and re-planning by identifying generalisations
or contingencies that can be intxxxiuced into the plan in order to avoid similar failures.

1.2. Planning with semi-autonomous agents

Most planners to date have constructed their plans with full knowledge of the capabilities of
the devices under their control. Thus, executing such plans involves the direct application of

the operators within the plan by an execution agent which has no planning capability. Invari-

ably, unforseen events will occur causing failure of the current plan and a request for repair of

the plan or re-planning directed at the planning system. Building into the execution agent

some ability to repair plans and to perform re-planning would improve the problem solving
performance of the execution agent, especially when it is remote from the central planning
system.

The scenario we intend to investigate is as follows. A central planner plans to achieve a task

described at a high-level of abstraction. The central planner has knowledge of the general
capabilities of a semi-autonomous execution agent but does not need to know about the actual

operators that execute the actions required to carry out the desired task. The execution agent
executes the plan by choosing the appropriate operators to achieve the various sub-tasks

within the plan, using its knowledge about the particular devices under its control. Thus, the

central planner communicates a general plan to achieve a particular task, and responds to
failures fed back from the execution agent which are in the form of flaws in the plan. The

execution agent communicates with the real world by executing the operators within the plan

and responding to failures fed back from the real world. Such failures may be due to the

inappropriateness of a particular operator, or because the desired effect of an operator was not
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achieved due to an unforseen event. The reason for the failure dictates whether the same

operator should be re-applied, replaced with other operators or whether re-planning should

take place.

1.3. The Role of Dependencies in Plans

The use of dependencies within planning promise great benefits for the overall performance of

a planning system particularly for plan representation, generation, execution and repair.

Early work on Decision Graphs by Hayes (1975) at Edinburgh has shown how the explicit
recording of the decisions involved in the planning process could be used for suggesting
where and how much re-planning should take place when unforeseen situations invalidate the

success of the current plan. Some work to link these ideas with a non-linear AI planner was

undertaken during the mid 1970s by Daniel (1983).

The notion of the teleology of a plan, which we call the Goal Structure (Tate, 1977), refers to

the dependencies between the preconditions and postconditions of operators involved in the

plan. Although, such dependencies have been shown to be useful for describing the internal
structure of the plan and for monitoring its execution (Fikes, Hart and Nilsson (1972), Tate

(1984)), there has been no comprehensive discussion of their use in all aspects of plan genera-

tion, execution monitoring and plan repair.

2. Planning and Execution Architecture

Recently, we have been promoting a common representation for the input/output requirements
and capabilities of a planner and execution agent. This supports the representation of the
communication between a user, requesting the plan, and the real world, in which the plan is

being executed. Such communication may take place either directly through a planner or
indirectly via a central planner and a dumb or semi-autonomous execution agent. In the latter
case, the communication between the central planner and the execution agent becomes an

interesting research issue.
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The common representation includes knowledge about the capabilities of the planner and exe-
cution agent, the requirements of the plan and the plan itself either with or without flaws. See

the diagram above. Thus, a planner wiU respond to the requirements of a user. Based on the

knowledge of its own capabilities and that of the execution environment, it win generate a

plan. This plan may then be executed directly in the real world, or, indirectly via an execu-
tion agent. The execution agent executes this plan in the real world and monitors the execu-

tion, responding to failures in one of two ways. If it does not have knowledge of its own
capabilities, it simply returns knowledge of the failure to the central planner and awaits a

revised plan to be sent. In this case, the execution agent is dumb. If it does have knowledge
of its own capabilities, it may attempt to repair the plan and then continue with execution.

On the other hand, if a repair is beyond the capabilities of the execution agent, then this

knowledge is fed back to the central planner and again a revised plan is expected. In this

case, the execution agent is semi-autonomous. When failures during the application of the

plan arc fed back to the planner, these may be acted upon by it and a repair of the plan made
or total re-planning instigated. This may, in turn, involve the user in reformulating the task
requirement. A revised or new plan is then executed. Finally, success of the execution or
partial execution of the plan is fed back to the user.

Other issues relating to the choice of the common representation and communication protocols
include:

• when to repair the plan or seek re-planning,

• continuing execution of parts of a plan, not affected by the failure,

• continuing to maintain a safe execution state even while awaiting initial commands or the
correction of faults in earlier plans,

• maintaining integrity and synchronisation of communicated plans and flaws.

3. Plan States

The O-Plan (Currie and Tate, 1985) Plan State holds a complete description of a plan at some

level of abstraction. The Plan State contains a list of the current flaws in the plan. Such flaws
could relate to abstract actions that still must be expanded before the plan is considered valid
for passing on for execution, unsatisfied conditions, unresolved interactions, overcommitments
of resource, time constraint faults, etc. The Plan State can thus stand alone from the control

structure of the AI planner in that it can be saved and restored, passed to another agent, etc.

At any stage, a Plan State represents an abstract view of a set of actual plans that could be
generated within the constraints it contains. Alternative lower level actions, alternative action

orderings and object selections, and so on are aggregated within a high level Plan State
description.

The O-Plan Task Formalism (TF) is a declarative language for expressing action schemata, for
describing task requests and for representing the final plan. Our design intention for O-Plan is

that a Plan State can be created from a TF description and vice versa. This has not quite
been achieved in the existing O-Plan prototype (Currie and Tate, 1989), but this remains our

goal. The aim is that the AI planner can take a Plan State as a requirement (created by a TF

Compiler from the user provided task specification in TF) and can use a library of action

schemata or generic plan state fragments (themselves created by the TF Compiler from a
domain description provided by the user) to transform the initial Plan State into one con-

sidered suitable for termination. This final Plan State could itself be decompiled back into a
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TF description ff required.

In practice, the O-Plan architecture is designed for operation in an environment where the ulti-
mate aim of termination will not be achieved. There will be new command requests arriving

and earlier ones being modified, parts of plans will be under execution as other parts are

being elaborated, execution faults are being handled, etc.

The Plan State cannot contain arbitrary data elements. The AI planner is made up of code

that can interpret the Plan State data structure and interpret the lists of flaws in such a way

that it can select from amongst its computational capabilities and its library of domain specific
information to seek to transform the current Plan State it is given into something that is

desired by the overall architecture. This is defined as the reduction of the list of flaws known

to the planner. The O-Plan architecture associates a Knowledge Source with each flaw type
that can be processed (Currie and Tate, 1985). An agenda of outstanding flaws is maintained

in a Plan State and appropriate Knowledge Sources are scheduled on the basis of this.

We believe that the basic notions described above can serve us well as a basis for an attack

on the problem of coordinated command, planning and execution in continuously operating

domains. We will explore the new properties that we must seek from our basic notions in the

following sections.

4. Plan Patches

The requirement for asynchronously operating planners and execution agents (and indeed

users and the real world) means that it is not appropriate to consider that a plan requirement is

set, passed on for elaboration to the planner and then communicated to a waiting execution

agent which will seek to perform the actions involved. Instead, all components must be con-

sidered to be operating already and maintaining themselves in some stable mode where they

are responsive to requests for action from the other components. For example, the execution

agent may have quite elaborate local mechanisms and instructions to enable it to maintain a

device (say a spacecraft or a manufacturing cell) in a safe, healthy, responsive state. The task

then is to communicate some change that is requested from one component to another and to

insert an appropriate alteration in the receiver such that the tasks required are carried out.

We propose to define a Plan Patch as a modified version of the type of Plan State used in O-

Plan. It would have some similarity to an operator or action schema given to an AI planning

system in that it would be an abstracted or high level representation of a part of the task that

is required of the receiver using terminology relevant to the receiver's capabilities. This

would provide a simplified or black-box view of possibly quite detailed instructions needed to

actually perform the action (possibly involving iterators and conditionals, etc). Complex exe-

cution agent representational and programming languages could be handled by using this
abstracted view (e.g., Georgeff and Lansky (1986), Nilsson (1988)). For example, reliable

task achieving behaviours which included contingencies and safe state paths to deal with

unforseen events could be hidden from the planner by communication in terms of a

simplified and more robust model of the execution operations (Malcolm and Smithers, 1988).

Outstanding flaws in the Plan Patch would be communicated along with the patch itself.
However, these flaws must be those that can be handled by the receiver.

It can be seen that the arrangement above (mostly assumed to refer to the communication
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between a planner and execution agent) also reflects the communication that takes place
between a user and the planner in an O-plan type AI planner. Requiring rather more effort

will be the investigation of suitable Plan Patch constructs to allow execution errors to be
passed back to the planner or information to be passed back to the user, but we believe that

this is a viable objective.

5. Plan Patch Attachment Points

There is a need to communicate the points at which the Plan Patch should be attached into the

full Plan State in the receiver. The sender and receiver will be operating asynchronously and
one side must not make unreasonable assumptions about the internal state of the other.

We intend to endow all the components with a real-time clock that can be assumed to be fully

synchronised. We will also make simplifying assumptions about delays in communication to
keep to the immeditate problem we are seeking to tackle (while fully believing that extension

to environments where communication delay is involved will be possible). Therefore, metric

time will be the "back-stop" as a means of attaching a Plan Patch into the internal Plan State
of the receiver. Metric time will also be important to start things off and to ensure a common

reference point when necessary (e.g., in cases of loss of control).

However, the use of metric time as an attachment point lacks flexibility. It gives the receiver

little information about the real intentions behind the orderings placed on the components of

the Plan Patch. It will, in some cases, be better to communicate in a relative or qualified way
to give the receiver more flexibility. Suitable forms of flexible Plan Patch Attachment Point

description will be investigated. Initial work will centre on descriptions relative to the
expected Goal Structure (Tate, 1977) of the receiver.

6. Incremental Plan States

Our approach will be to combine the ideas above to define an Incremental Plan State with

three components:

I. a plan patch,

2. plan patch flaws as an agenda of pending tasks,

3. plan patch attachment points.

Such Incremental Plan States will be used for two way communication between the user and
the planner and between the planner and the execution agent. Our current Plan State struc-

tures and flaw repertoire will be extended to cope, initially, with a dumb execution agent that

can simply dispatch actions to be carried out and receive fault reports against a nominated set

of condituions to be explicitly monitored (as described in Tare, 1984). Later in the research

programme, the Plan State data structures and flaw repertoire will be extended again to cope
with a semi-autonomous execution agent with some capability to further elaborate the Incre-

mental Plan States and to deal locally with re-planning requirements.

A means to compile an Incremental Plan State from a modified type of Task Formalism (TF)

declarative description (and vice versa) will be retained.

7. Plan Transactions

The overall architecture must ensure that an Incremental Plan State can be understood by the

receiver and is accepted by it for processing. This means that all the following are
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understood by the receiver.

1. plan patch description is clear,

2. plan patch flaws can be handled by receiver's Knowledge Sources,

3. attachment points understood.

It is important that the sender and receiver (whether they are the user and the AI planner, the

planner and the execution agent, or one of the reverse paths) can coordinate to send and

accept a proposed Incremental Plan State which the receiver must assimilate into their own

Plan State. We proprose to use transaction processing methods to ensure that such coordina-
tion is achieved.

We expect to create some specific flaw types and Knowledge Sources in the various com-
ponents (user interface, AI planner and execution agent) to handle the extraction and dispatch
(as an Incremental Plan State) of a part of an internal Plan State in one component, and the

editing of such an Incrememtal Plan State into the internal Plan State of the receiver. The
"extraction" Knowledge Sources must be supplied with information on the Plan Patch

description, flaw types and attachment points that the receiver will accept. This constitutes

the primary source of information about the capabilities of the receiver that the sender has
available and its representation will be an important part of the research.

Communication guards will ensure that the a priori criteria for acceptance of an Incremental

Plan State for processing by the receiver's Knowledge Sources are checked as part of the Plan

Transaction. It may also be the case that initial information about urgency will be able to be
deduced from this acceptance check to prioritise the ordering of the new flaws with respect to

the existing entries on the agenda in the receiver.

8. Application to Spacecraft Command and Control

Spacecraft command and control provides a realistic target domain for looking at planning and
execution, in particular, for planning with semi-autonomous agents. The desire to improve the

autonomous capabilities of a spacecraft is apparent, especially for spacecraft in communica-

tion with an earth-based segment, such as for a deep space probe in communication with its

mission control or for a satellite with its ground station, or, indeed, for a space station that is

controlling various on-board devices such as robot arms and orbital manoeuvring vehicles.

The NASA Jet Propulsion Laboratory Deviser planner which was applied to the task of gen-

erating command sequences for the Voyager spacecraft (Vere, 1983) was based on our earlier

work on the Nonlin plannner (Tate, 1977). Recently, AIAI has had a team of people who
have worked on the application of Knowledge-Based Planning and other Knowledge-Based

Systems techniques to the area of spacecraft command and control. This has been funded by

the European Space Agency for ERS-1 scheduling (Fuchs et al., 1988) and by the UK Science

and Engineering Research Council for work on a technology proving satellite T-SAT (Drum-
mond, Currie and Tate (1987, 1988), Fraser et al (1988)).

The investigation of planning and execution using the approach described above will be car-

ried out in the context of an application to spacecraft command and control using data from a

system such as ERS-1 or the Polar Platform segment of the International Space Station. We
are alert to the possibility of viewing our techniques as being relevant to the process of Task

Amplification whereby a user's commands can be interpreted via a planner and an intelligent

execution monitor in a teleoperations environment.
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9. Next Steps

The description in this paper of our approach to the integration of planning and execution is

based on ideas and techniques that have been developed over a significant period of time. A
number of important building blocks are now seen to be in place for a concerted effort to con-

struct such an integrated command and control system able to operate in a realistic application
domain.

We believe that the simplifications we have made and the differentiation of the nature of the

experimental planning and execution environments we will explore will assist in clarifying our
research approach. However, we believe that the architecture should be quite general if we

are successful. We expect that one advantage of the line of attack we propose will be the

ability to deal with large scale realistic execution environments of the type now being
developed by other researchers.
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